

These	3	methods	(each,	map	&	select)	are	the	most	important	Ruby	methods	that
you	need	to	know.

Why?

Because	a	lot	of	what	you	are	going	to	be	doing	is	working	with	data.

And	these	methods	are	used	to	work	with	collections	of	data	(Array,	Hash,	Range).

In	this	guide	I	want	to	help	you	understand	the	difference	between	these	methods
&	when	you	should	be	using	one	or	the	other.

Each	vs	Map	vs	Select

Each	is	the	most	basic	of	the	Enumerable	methods.

In	fact,	almost	every	other	method	that	iterates	over	a	collection	is	based	on	each.

So	it's	like	a	building	block.

Let's	see	an	example:

numbers	=	[1,2,3]

numbers.each	{	|n|	puts	n	}

#	1
#	2
#	3

This	is	your	basic	loop	in	Ruby	(if	you	need	the	index	you	can	use
each_with_index).

But	many	times	you	want	to	do	something	more	than	just	print	the	elements...

That's	where	the	other	methods	come	into	play.

The	Each	Method

Select	&	Map	are	specialized	versions	of	each.

With	select	you	can	"filter"	your	array	to	create	a	new	array	with	only	the	matching
elements.

Example:

numbers	=	[1,2,3,4,5,6]

numbers.select	{	|n|	n.even?	}

#	[2,4,6]

In	this	example	we	filter	our	original	numbers	to	only	the	numbers	that	are	even.

We	can	still	do	this	with	the	each	method,	but	it	will	require	some	extra	code.

Example:

numbers	=	[1,2,3,4,5,6]
results	=	[]

numbers.each	{	|n|	results	<<	n	if	numbers.even?	}

p	results
#[2,4,6]

Notice	how	we	need	a	few	extra	elements:

An	empty	array	to	store	our	results
The	<<	(called	"shovel"	or	"push"	operator),	which	appends	a	new	value	into
the	results	array
An	if	statement

All	of	these	things	are	taken	care	for	us	by	Ruby	when	we	use	select	instead	of
each.

That's	what	I	mean	with	"a	more	specialized	version	of	each".

The	Select	Method

The	map	method	helps	you	collect	the	results	of	iterating	over	your	array	elements,
resulting	in	a	new	array.

It	can	be	used	to	apply	some	operation,	like	downcase	or	upcase,	to	every	element
of	the	array.

Example:

names	=	["David",	"Grant",	"Bob"]

names.map	{	|name|	name.downcase	}

#	["david",	"grant",	"bob"]

Notice	that	this	doesn't	change	the	original	array!	It	returns	a	new	one.	If	you	want
to	save	the	results	of	map	you	need	to	use	a	variable.

Like	this:

downcase_names	=	names.map	{	|name|	name.downcase	}

You	can	also	use	map	for	numbers	or	anything	else:

numbers	=	[1,2,3,4,5]

numbers.map	{	|n|	n	*	10	}

#	[10,	20,	30,	40,	50]

Don't	just	read	this.	Open	irb	now	&	practice	using	map	:)

The	Map	Method

Ok	so	what	is	the	difference	between	these?

Besides	each,	every	Enumerable	method	has	it's	own	specialized	function.

Refer	to	the	Ruby	documentation	to	learn	what	every	method	does	&	to	see
examples.

(Note:	Enumerable	is	a	built-in	Ruby	module	that	hosts	these	methods)

You	should	always	use	the	more	specialized	methods	if	possible	because	they	are
more	efficient	&	produce	better	code.

If	you	can't	find	the	perfect	method	for	your	situation	remember	that	can	you
always	fall-back	to	a	more	basic	method	like	each	(or	even	a	while	loop)	&	change
it	later	when	you	find	a	better	method.

(Watch	this	video	to	learn	more	about	loops.)

Another	important	thing	is	knowing	what	the	method	returns.

Map	&	select	will	return	a	new	array,	while	each	will	always	return	the	original
array.

The	Difference

http://ruby-doc.org/core-2.4.1/Enumerable.html
https://www.youtube.com/watch?v=yPLNwIRD6Tk

You	have	learned	about	some	of	the	most	important	Ruby	methods	(each,	select	&
map),	how	they	work	&	the	differences	between	them.

Important	points	to	remember:

map	&	select	DON'T	change	the	original	array	(unless	you	use	map!	or	select!,
there	is	no	each!)
each	is	a	building	block	for	the	other	Enumerable	methods
Enumerable	methods	are	the	key	for	writing	idiomatic	Ruby	code

If	you	have	mastered	those	already	look	into	the	following	methods:	inject,
partition	&	group_by.

Exercise	1:

Write	a	Ruby	program	that	reads	in	a	list	of	names	&	then	prints	only	the	names
that	have	a	string	size	of	4	or	above.

Exercise	2:

Just	like	I	did	with	the	select	method,	try	to	understand	what	map	is	doing	for	you	&
write	your	own	version	of	the	map	method.

Summary

