
Rails Guide
Hey, thanks a lot for picking up this guide!

I created this guide as a quick reference for when you are working on your
projects, so you can quickly find what you need & keep going.

Hope it helps you!

MVC Architecture

Letter
Full
Name

Description

M Model Everything database related.

V View
The front-end / HTML / CSS, what the user of your
app sees.

C Controller Glues the Model & the View.

Migrations

System to update your database schema.

Example 1:

rails generate migration AddPartNumberToProducts part_number:string

Example 2:

rails generate migration AddColumnToPosts user:references

Example 3:

rails generate migration CreateUsers name:string email:string

Types of values:

string (less then 255 characters)
text

datetime
timestamp
float
decimal
integer
boolean
references

Run migrations:

rake db:migrate

Migration Formats:

CreateXXX -> create_table
AddXXXToYYY -> add_column
RemoveXXXFromYYY -> remove_column

Routes

Is the part of Rails that knows how to handle URLs & match them to a
controller.

Set the main page for your website:

root "pages#index"

Create new routes:

get "/users", to: "users#index", as: "users"
get "/users/:id", to: "users#show", as: "show_user"
post "/users/create", to:"users#create", as: "create_user"

Create a set of related routes:

resources :users # Has index route, plural
resource :post # No index route, singular

Listing Routes:

rake routes

Scaffolding

Create MVC files, migrations & testing templates.

Example:

rails generate scaffold Post votes:integer link:text

ERB

Embbeded Ruby. Allows you to have Ruby code inside HTML.

How to embbed Ruby code:

<% 123 %> # Doesn't show output on page
<%= 123 %> # Shows output on page

Loop:

<% @posts.each do |post| %>
 <p><%= post.votes %></p>
 <p><%= post.link %></p>
<% end %>

Links:

<%= link_to 'Upvote', upvote_post_path(post), method: 'post' %>
<%= link_to 'Edit', edit_post_path(post) %>
<%= link_to 'Show', post %>

Validations

Allow you do define what data is valid & what is not valid.

Example:

validates :votes, presence: true
validates :link, uniqueness: true

Format:

validates :legacy_code,
 format: { with: /\A[a-zA-Z]+\z/, message: "only allows letters" }

Inclusion:

validates :size, inclusion: { in: %w(small medium large),
 message: "%{value} is not a valid size" }

Length:

validates :name, length: { minimum: 2 }
validates :bio, length: { maximum: 500 }
validates :registration_number, length: { is: 6 }

Numericality:

validates :points, numericality: true
validates :age, numericality: { greater_than: 21 }
validates :votes, numericality: { less_than: 10 }

Custom Validation

With validation class:

class EmailValidator < ActiveModel::EachValidator
 def validate_each(record, attribute, value)
 unless value =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i
 record.errors[attribute] << (options[:message] || "is not an email")
 end
 end
end

class Person < ApplicationRecord
 validates :email, presence: true, email: true
end

With validation method:

validate :expiration_date_cannot_be_in_the_past

def expiration_date_cannot_be_in_the_past
 if expiration_date.present? && expiration_date < Date.today
 errors.add(:expiration_date, "can't be in the past")
 end
end

Conditional Validation

class Order < ApplicationRecord
 validates :card_number, presence: true, if: :paid_with_card?

 def paid_with_card?
 payment_type == "card"
 end
end

ActiveRecord

Query the database, update & delete data.

Query:

User.all
User.first
User.find_by(email: "test@example.com")
User.where("id > ?", params[:min_id])

Updating:

Find one user
@user = User.first

Update attributes
@user.name = "John"

Save changes
@user.save

Rails Naming Conventions

Model - Singular
Database table - Plural + snake_case
Controller - Plural
Views Folder - Plural

Example:

Model - User
Table - user
Controller - UsersController
Views Folder - users

Heroku Deploy

When you are ready to deploy your application to heroku you will need to
make sure you have created an account & installed the heroku CLI as per the
instructions.

Then you will need to login & create a new app.

Login:

heroku login

Create new app:

heroku create

Push changes:

git push heroku master

Read logs:

heroku logs

Run migrations:

heroku exec rake db:migrate

Also make sure that you have the pg gem on your Gemfile & that
config/database.yml is setup to use postgres in production.

You also want to use postgres locally if possible to avoid any incompatible
changes.

Controller Actions

Share data with views via instance variables.

Example:

def index
 @users = Users.all
end

Redirect to another action:

def upvote
 redirect_to action: 'index'
end

Layouts

If you want to create a menu or have some elements that show on all of the
pages of your site then you need to use layouts.

By default your main layout file is under app/views/layouts/application.html.erb .

It's just a regular view file that you can edit & customize to your needs.

Associations

3 types:

One-to-One

One-to-Many
Many-to-Many

Example:

class User < ApplicationRecord
 has_many :posts
end

class Post < ApplicationRecord
 belongs_to :user
end

Make sure that Post has a user_id column:

rails generate migration AddColumnToPosts user:references

Then:

rake db:migrate

To get all the posts for a user:

u = User.first

u.posts

Thanks for reading this guide!

- Jesus Castello (www.rubyguides.com)

http://www.rubyguides.com/

