


How	do	you	write	great	Ruby	code?

There	isn't	a	simple	answer.

But	after	reading	a	few	books	on	the	topic,	I	came	up	with	3	principles	that
will	guide	you	towards	better	code.

If	you	don't	have	any	guiding	principles	then	you	don't	know	what	to	aim
for.

It's	like	going	to	a	new	city	without	having	a	map.

I	want	to	give	you	this	map.

Let's	start	with	the	1st	principle...

3	Principles	for	Writing	Great	Ruby	Code



Misunderstanding	is	the	biggest	cause	of	mistakes.

For	example,	if	I	tell	you	over	the	phone	"buy	bacon",	but	you	get	oranges
instead	that's	a	misunderstanding.

How	does	misunderstanding	happen	in	code?

It	happens	when	variables	don't	have	descriptive	names,	when	you	read
outdated	comments,	when	you	have	to	spend	too	much	time	trying	to
understand	a	section	of	code.

This	confusion	&	misunderstanding	leads	to	a	lack	of	readability.

It	makes	you	waste	a	lot	of	time.

You	can	fix	this	in	a	few	ways:

Use	good	names	for	your	methods	&	variables	(I	know,	this	is	harder	than
it	sounds,	but	there	are	a	few	rules	you	can	follow)
Delete	or	update	outdated	comments
Group	&	organize	your	code	into	logical	sections

Example:

if	name	=~	/\A[A-Za-z]{3,}\d+\z/
		#	...
end

You	may	be	a	master	of	regular	expressions,	but	even	then	you	won't	know
the	intention	of	this	code.

Why	do	we	need	this	regexp?

You	want	to	make	your	code	so	obvious	that	you	don't	have	to	think	about	its
meaning.

The	meaning	becomes	crystal	clear,	comments	become	unnecessary,	your
code	becomes	self-documenting.

Principle	1	-	Avoid	Misunderstanding



After	refactoring:

VALID_USER_NAME	=	/\A[A-Za-z]{3,}\d+\z/

if	name	=~	VALID_USER_NAME
		#	...
end

Now	we	know	the	purpose	of	this	code,	to	check	if	some	string	contains	a
valid	username	or	not.

Case	closed.

No	more	investigation	or	guessing	necessary.



Creating	more	classes	is	the	key	to	breaking	down	big	classes	&	methods	into
smaller	classes.

A	class	can	become	so	big	that	we	call	it	a	God	class...

...it	knows	everything,	it's	everywhere	&	has	all	the	most	important
functionality.

You	can't	let	a	single	class	have	so	much	control	over	your	system.

So	don't	fear	creating	more	classes.

As	Steve	McConnell	said:

"The	single	most	important	reason	to	create	a	class	is	to	reduce	a
program's	complexity"

Example:

class	Game
		def	display_board
		end

		def	save_state
		end

		def	make_move
		end

		def	valid_move?
		end
end

This	code	has	methods	with	different	concerns,	different	goals.	Displaying	the
board	is	very	different	from	saving	the	game	state,	or	making	a	move,	or
checking	if	a	move	is	valid	in	this	game	or	not.

Principle	2	-	Create	More	Classes



You	can	look	at	what	these	methods	are	doing,	what	data	they	are	working
with	(both	parameters	&	instance	variables),	and	what	concepts	they
represent.

Then	extract	these	responsibilities	into	new	classes.

After	the	refactoring:

class	GameBoard
		def	display_board
		end
end

class	GameState
		def	save
		end
end

class	GameLogic
		def	make_move
		end

		def	legal_move?
		end
end

When	you	do	this	your	code	will	be	closer	to	following	the	Single
Responsibility	Principle	(SRP).

There	are	other	situations	where	you	want	to	create	classes.

Let's	say	that	you	have	a	string	that	represents	an	email	address.

This	string	is	passed	around	to	different	methods	&	all	of	these	methods
check	if	this	string	is	a	valid	email	address.

Not	only	this	is	a	case	of	duplication	(which	I	cover	in	principle	#3),	but	it's
also	prone	to	errors.

What	if	you	forget	to	check	in	some	new	method?

The	solution	is	to	encapsulate	that	string	into	an	EmailAddress	class	that
checks	its	own	validity	when	it's	created.	Now	you	can	remove	all	these	extra
checks	&	be	sure	that	you	are	working	with	a	valid	email	address	every	time.



Look	for	these	"hidden	concepts	with	logic/validation"	in	your	code.

There	are	a	lot	of	these.

Another	example	could	be	Integers	representing	weights.

How	do	you	make	sure	that	you	don't	mix	up	one	integer	representing	kilos
with	one	representing	pounds?

Create	classes	for	them.



The	biggest	barrier	to	code	readability	&	maintainability	are	unnecessary
elements.

What	kind	of	elements	are	unnecessary?

Return	statements	at	the	end	of	methods
Extra	temporary	variables
Redundant	comments
Duplication
Code	that	doesn't	do	anything	(like	1.times)

"Duplication	is	the	primary	enemy	of	a	well-designed	system."	-
Robert	C.	Martin

It's	critical	that	you	eliminate	all	these	elements	from	your	code	if	you	want	it
to	be	cleaner	&	easier	to	read.

Example:

def	add(a,	b)
		result	=	a	+	b

		return	result
end

After:

def	add(a,	b)
		a	+	b
end

Here	we	don't	need	the	temporary	variable	or	the	return	statement	because
in	Ruby	the	last	expression	in	a	method	becomes	its	return	value
automatically.

Principle	3	-	Remove	Unecessary	Elements



Another	example:

@x	=	1080	/	2
@y	=	1080	/	2

After:

SCREEN_WIDTH	=	1080

@x	=	SCREEN_WIDTH	/	2
@y	=	SCREEN_WIDTH	/	2

We	have	removed	duplication	(principle	#3)	&	misunderstanding	(principle
#1).

These	3	principles	work	together.

When	you	know	what	to	look	for	you'll	see	yourself	applying	these	3	principles
almost	effortlessly.



This	is	the	"tip	of	the	iceberg"	as	they	say.

There	is	a	lot	more	to	learn	to	become	an	effective	Ruby	developer.

You	need	a	catalog	of	code	examples	&	techniques	to	apply	these	principles
for	maximum	benefit	in	minimum	time.

That's	why	I	created	a	new	course	for	you.

It's	called	Beautiful	Ruby.

I'll	let	you	know	when	it's	available,	hope	you	look	forward	to	it	:)

-	Jesus	Castello	(www.rubyguides.com)

Taking	These	Principles	to	The	Next	Level


